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Abstract--An exact numerical solution for the velocity profiles and the form of a laminar jet in immiscible 
Newtonian liquid-liquid systems is obtained. The main difficulty connected with the simultaneous in- 
tegration of the equations of motion of the jet and of the continuous phase in the presence of an unknown 
interface is overcome by using an indivisible finite-difference scheme. This avoids any additional iteration 
for defining the unknown velocities of the points of the interface. The solution of the equations of motion 
as written in a boundary layer approximation is a function of the following non-dimensional numbers: the 
Reynolds numbers of each phase, the Weber and Froude numbers and the ratio of the densities. The 
influence of some of these parameters on the jet behaviour is illustrated as well as the influence of the initial 
velocity profiles at the nozzle exit. 

A comparison is made with some known results. Important differences are found to exist between the 
exact and the approximate velocity profiles and their gradients at the interface. It seems that these 
differences result from the comparatively inexact description of the boundary layer of the continuous phase 
when using moment methods. Such a conclusion limits the applicability of the approximate moment 
solutions to heat and mass transfer problems as well as to the jet stability analysis. 

1. I N T R O D U C T I O N  

The velocity profiles and the jet radius of a laminar jet form the basis for investigation of 
numerous mass- and heat-transfer problems in liquid-liquid systems. These quantities are also 
necessary for the analysis of the jet instability which results from the propagation of small 
disturbances over the interface. Investigation of these problems is of interest for determination 
of the interfacial area of a liquid-liquid extraction column. 

The first numerical solution of the problem of defining the velocity profile and the 
contraction of a liquid laminar jet belongs to Duda & Vrentas (1967). These authors have 
considered a jet running into a gaseous continuous phase and accounted for the presence of the 
latter by only introducing a pressure term into the boundary condition at the jet surface. In 
order to overcome the main difficulty resulting from the presence of a free boundary and to 
apply a finite-difference scheme, Duda & Vrentas have introduced Protean coordinates, i.e. the 
stream function together with the axial coordinate have been chosen for new independent 
variables. The analysis of Duda & Vrentas needs to be extended to the case when both the 
dispersed and the continuous phases are viscous liquids. Such an extension is necessary when 
the effects of the density and viscosity of the continuous phase are of interest. 

Within the formulation of Yu & Scheele (1975) this more complicated problem has been 
reduced to the integration of a simultaneous system of nonlinear partial differential equations. 
To the difficulties connected with the existence of an interracial free boundary has been added a 
new one, caused by the necessity of the simultaneous integration of the equations of motion of 
the continuous and dispersed phases. Yu & Scheele have substituted for the exact solution an 
approximate one constructed by means of a moment integral method. Various moment methods 
have been also used in other papers (see Meister & Scheele 1969; Penchev et al. 1977, etc.). 

In this paper the application of the finite-difference method has been extended to the general 
case of a jet in liquid-liquid systems. A direct numerical solution of the equations of motion as 
stated by Yu & Scheele (1975) has been obtained. Iri the framework of the proposed method the 
Duda & Vrentas solution appears as a particular case. 

The necessity of establishing a direct numerical method arises naturally since the above 
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mentioned approximate solutions are numerical. The main requirement for such a method is 
that the computational time be in acceptable limits. 

The main point of the proposed method is the finite-difference formulation of the indivisible 
boundary problem for both phases avoiding any additional iteration for the unknown velocities 
of the points of the interface. This makes the computational time comparable to the average 
time necessary for an approximate numerical solution. 

2. E Q U A T I O N S  O F  M O T I O N  

Consider a vertical stationary axisymmetric liquid jet running with an average axial velocity 
UN into another liquid out of a nozzle of a circular cross section of diameter DN. Suppose that 
both the jet and the surrounding liquid are incompressible, Newtonian and immiscible and that 
the fluid system thus obtained lacks heat- and mass-transfer. The geometrical configuration of 
the flow is shown in figure 1. 

Because of the flow symmetry a cylindrical coordinate system is applied with axis z 
coincident with the jet axis (in the direction of the injection) and origin at the centre of the 
nozzle exit. 

The equations of motion and the boundary conditions are reduced to dimensionless form 
with the characteristic scale parameters DN and UN. Variables with subscripts 1 and 2 refer to 
the continuous and dispersed phase respectively. 
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Figure 1. Flow configuration. 

(a) Continuous phase 
The complete set of equations of motion of the continuous phase includes two dimension- 

less parameters--Reynolds number Re~ = (DNp~ UN)[I~ (where p~ and/~ are correspondingly 
density and dynamic viscosity) and Froude number Fr = U~/(DNg) (where g is acceleration of 
gravity). 

The analysis of the orders of magnitude (Yu & Scheele 1975) shows that when Re~ > 100 the 
simplification of the boundary layer theory may be applied to the equations of motion. The 
boundary layer equations concerning the continuous phase when written in cylindrical coor- 
dinates in dimensionless form read 

1 ~ . 0 U ~  0 ,  [1]  
r ~r [rV1) + O--Z = 

V OU, OU, p2aP,+__._2 [1 8 { raU, '~]+ 1 
,~-~-+U, az = p, ~z Re, LrO-r\ -~ - ] . 1 -2 -~ '  [2] 

oP.._~ = o, [3] 
Or 

where (V, V) are the velocity components. 
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Signs ( + ) and ( - ) in front of the term ll(2Fr) in [2] correspond to a jet injected downwards 
and upwards respectively. Thus for a jet injected upwards [1]-[3] are identical to those of Yu & 
Scheele (1975). 

Only the first case (that is a jet injected downwards) will be considered for reasons of 
definiteness. Equation [3] represents a well known result of the boundary layer theory, i.e. the 
independence of the pressure on the radial coordinate of the layer. With this in mind and 
because of the immobility of the continuous phase out of the layer, i.e. 

lh aPi _ 1 
pl az 2Fr' [4] 

one can exclude the pressure gradient term from [2]: 

v OU, . OU, 2 [ l ~ ( r a U l ' ~ ]  
i - . . ~ -  . {- Ul Oz - R e l L r O r \  Or/J" [51 

(b) Dispersed phase 
One can obtain the equations of motion of the jet liquid by substituting subscript 2 for the 

subscript 1 in [1]-[3]. 
The analysis of the orders of magnitude of the equations of motion of the dispersed phase 

belongs to Duda & Vrentas (1967) and Markova & Shkadov (1972). The main mathematical 
difficulties in solving the equations of motion of both phases arise from the existence of the 
unknown interface (the jet surface), 

To overcome these difficulties Duda & Vrentas (1967) have applied Protean coordinates 
(~, ~') by means of which the phase surface equation reads ¢ = const -- C~. 

The existence of C, actually results from the condition of mass conservation within the jet. 
In terms of the chosen dimensionless parameters and upon the condition that ¢ - -0  at r--0, 
C+--1/2. In what follows the equations of motion of the dispersed phase will be used as 
derived in detail by Duda & Vrentas (1967), i.e. 

r 2 112 0¢2 20P2+4[0¢2 + ¢p2 O~o2]+Re2 
tTf 2 

OP2 _ O, 
O0-  

[61 

[71 

where ~ = z/Re2 and ,pe = U~ ~ are introduced for convenience. 
In [6] the radial coordinate r of an arbitrary point of the jet is supposed to be a function of 

and ~', defined as 

ar 2 2 
o-~ = ¢ ,m.  [8] 

Equations [6]-[8] form a set of nonlinear partial differential equations which describe the 
distribution of the axial velocity within the jet. For defining the radial component one should 
use the equation 

_ i/2 O r  V2" Re2 = +2 ~'~. [9] 

The method of elimination of the term OPi/Oz from [2] could be also applied to the term 
OP,/O~ in [6]. The condition of continuity of the pressures PI and P2 through the interface which 
is necessary for such an elimination contains an extra term caused by the interfacial tension. 
The elimination concerning [6] will be presented in the next section. 
MF Vol. 5. No. I--G 
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Protean coordinates are mostly suitable for the case of a gaseous continuous phase which 
acts on the jet through the pressure Pj only (D.uda & Vrentas 1967). 

In the considered case of a liquid-liquid fluid system these coordinates are more suitable 
than the cylindrical coordinates when the flow within the jet is concerned. Cylindrical 
coordinates (r, ~) are preferable in the region of the outer boundary layer because they lead to a 
simpler form of the boundary conditions at the outer boundary. Note that this boundary is not a 
streamline. Thus in Protean coordinates, the boundary is described by the equation ~ = ~b(~), 
where 0(~') is an unknown function which lacks prior constructive arguments. 

Equations [I] and [5] are written for convenience in terms of the new variables ~ and 
em= U~ 2, that is 

1 ¢~011]2 
~r (rV') ÷ Re2 a~ =0' [10] 

,p,~ a,p, 4,p?/~ [1 a [ r a,pA] 
v '~ ' -~ r  + Re2 a ~  = Re, [ r~ ,2 -~ -~ ,  ~ - ) J  • Ill] 

(c) Initial velocity profiles 
Using these profiles one prescribes the flow of the two phases in the initial cross section 

(~ = 0). In the proposed solution profiles of general type may be used, i.e. 

¢p,(r) = gl(r), [12] 

~o2(i/1 ) = g2(~/), [ 131 

where gl(r) and g2(0) are theoretically or experimentally defined functions. 
Two versions (as mostly used) of condition[13] will be considered here, namely 

g2(~b) = 4(1 - 2~b), [14] 

g2(O) = 1. [15] 

The fully developed parabolic profile [14] corresponds to a jet issuing out of a sufficiently 
long nozzle. Later an initial profile of the form 

gl(r)=-O [16] 

will be considered which corresponds to a nozzle ending in a hole in an infinite plate. Equation 
[15] together with [16] correspond to a jet issuing out of a hole in an infinite thin plate. Both [14] 
and [15] profiles satisfy the mass balance condition with C~ = 1/2. Note that one can use 
another profile (defined theoretically or experimentally) instead of [16]. Then the general case of 
a jet issuing out of a nozzle into a movable or immovable continuous phase could be also 
analysed. When (as in the considered case) the hozzle exit is surrounded by a plate the initial 
profile of the continuous phase is known in advance. 

3. BOUNDARY CONDITIONS 

The equations of motion of both phases should be completed with boundary conditions 
describing the flow along the jet centerline and on the outer surface of the boundary layer of 
the continuous phase. Conditions describing the interaction between the jet flow and the 
surrounding liquid through the interface should be also imposed. 

(a) Interface (0 = 112) 
As has been shown by Yu & Scheele (1975) the conditions of continuity of the shear and 
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normal stresses through the interface can be reduced to the form: 

aUi aU2 /z,'-~- =/.t2 8# ' [17] 

2 [18] 
P2-  PI = R • We '  

where R(~ r) is the unknown radius of the jet and We = (DNU~p2)/T. The pressure jump as 
expressed in the right side of [18] is caused by an interfacial tension T. Note that the pressures 
P~ and P2 in [2], [6] and [18] are made dimensionless with respect to ~ U f .  

With the aid of [18], [6] can be written in a simpler form (as it was underlined above). 
Solving [18] for aP2]d~" and taking into account [4] (for aPJc~() one determines the equation 

~9~2 ,,r + 2 dR 2 , ,df~02 , r2~2112 a2~2]  
a-7 = ' ' '  w , ( - - ~ k - 7 - a T " L ~ "  2 ~ - I  [19] 

instead of [6], where 

NJ=7; 
The factor 1 - (pJp2) corresponds to a jet injected downwards. The continuity conditions for 

the radial and axial velocity components must be satisfied, i.e. 

UI = Uz (,pl = ~2), [20] 

V, = V2. [211 

Equation [20] expresses the nonslip condition of the liquids along the interface and together 
with [17] describes the interaction between the phases. Equation [21] describes the standard 
condition of absence of mass flow through the interface. With the aid of [20] condition [17] may 
be reduced to the following simpler form 

a~l  n 112 19~2 
m ~ = ~2~2 -~ ' -  [22] 

(b) Jet axis (~ = O) 

In the above considerations a condition ~ = 0 at r = 0 was used. Since ¢J is now an 
independent variable this condition will be used then in the form 

r 2 = 0 [231 

at ~ = 0 .  
Equation [23] applied to the points of the jet axis leads to a new boundary condition. 

Formally this condition follows from [19] with the function r 2 supposed to be equal to zero, 

aq~.__3 = 1 ra~2 L, 2 dR 2] 
[241 

Conditions [23] and [24] are identical to those of Duda & Vrentas (1967). 

(c) Outer edge of  the boundary layer 

Formally the boundary condition must be written as follows 

U1 = 0 (,01 = 0). [25] 
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This corresponds to a continuous phase which is immovable out of the boundary layer. 
Strictly speaking [25] is valid at r--* oo. But it is known from the boundary layer theory that this 
can be satisfied up to a sufficient degree of accuracy at r = rmx, where rmax is generally a 
function of ~'. Later this function is defined from numerical experiments. 

4. DIRECT NUMERICAL SOLUTION 

The equations of motion of the continuous ([10] and [11]) and dispersed ([8], [9] and [19]) 
phases together with the corresponding boundary ([25] and [23], [24]), initial ([16] and [14] or 
[15]), and interracial ([20], [21], [22]) conditions form a set of nonlinear partial differential 
equations which describe the velocity distribution. In what follows a finite-difference method is 
applied for solving this set of equations. 

The equations of motion were first approximated in the sense of the finite-difference method 
over a suitable grid, shown in figure 2. The scheme is of the second order of approximation and 
is implicit in the ~" direction. The grid was constructed in such a way that its lines with a step A~k 
along the axis r inside the jet 0 -< $ -< 1/2 coincide with the streamlines. When the outer layer 
region is considered these lines with a step Ar are equidistant starting with the line $ = 1/2. The 
grid lines along ~" with a step A~" are parallel to the axis r. The values of A0 and Ar are defined 
in accordance with the required accuracy of the numerical solution. 

An outer iterative procedure was constructed for determining the unknown radius of the jet. 
If in the process of the solution an approximation of the jet radius has been obtained then the 
interface position and the entire flow geometry would be determined. 

The task is to find the corresponding velocity distribution after the flow geometry is 
determined. An inner iterative procedure is used for that purpose because of the nonlinearity of 
the system of algebraic equations obtained from the approximation of the nonlinear system of 
partial differential equations. 

After a standard linearization, the finite-difference versions of [19] and [l 1] for the dispersed 
and continuous phase are 

A(k-l) .(k) + :',(k-l) (k)-- D(k-l) .(k) __ F/{k-l), 
i ~i-I.i ~i ~i.i "?" zai ~ i+l.i [26] 

i ~v.t,- 

j-1 
j 

Figure 2. Grid of the finite-di~erence scheme. 
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where k is the number of the internal iterations. The coefficients &, Bi, C and F~ are known 
functions of ~p, r 2 and V at the knots of the row analysed in the course of the k - 1 iteration. F~ 
is at the same time a function of the values of ~ on the previous row, Subscripts 1 and 2 in [26] 
for the continuous and dispersed phase have been omitted. 

The finite-difference form of [22] at the interface point of the j-row is analogous to [26]. For 
the first two points of the row [24] is added to [26] and for the last two points of the same row 
[25] is added. Thus the matrix of the set [26] is tridiagonal and its solution may be found by an 
elimination method. 

The procedure described yields an indivisible boundary problem for both the jet and 
continuous phase liquids. In such a way any additional iterative procedure for the unknown 
velocities of the points of the interface is eliminated. 

The k-approximation of r 2, V and ~p for every point of the row analysed is determined with 
the aid of the k-approximation of the axial velocity distribution. In this way the k-ap- 
proximation of the j-row is completed. 

The results obtained are used for calculating the new values of the coefficients Ai, B~, 6",- and 
F~. Then the inner iteration is repeated until the prescribed initial accuracy is reached. The 
velocity distribution calculated for the j-row is used as a zero approximation for the next j + 1 
row ( j>  1). Equations [14] or [15] and [16] yield a value of ~ which is used for similar 
calculations concerning the first row U = 1). 

After passing through all the rows along st-line one automatically obtains the next ap- 
proximation for the jet radius R(~') by using the solution of [8] with ff = 1/2. The outer iterative 
procedure described above ends after reaching the previously given accuracy. In this way the 
final numerical solution of the problem is obtained. The zero approximation for R(~') is found 
by the method of Targ-Shvetz (see Penchev et al. (1977)) or by means of a function of the type 
R(~') = 1 - e x p  (-C~') (C is a suitable constant). The iterative process is numerically stable and 
converges to the exact solution. The rate of convergence does not practically depend on the 
type of the zero approximation for R(~'). A program in Fortran IV was written. The average 
time for a given version of a numerical solution (up to an accuracy of 10 -3 with respect to R) 
does not exceed 8 rain on IBM 360/45. 

5. ANALYSIS OF THE NUMERICAL RESULTS 

(a) Computat ions 

The calculated cases are described in table 1 which contains chosen values of all of the five 
characteristic dimensionless numbers. Case 1 is considered as a basic one. It corresponds to a 
real liquid-liquid system (methane/tetrachloride-water). The Reynolds numbers of the 
continuous and dispersed phases were obtained from experimentally observed velocities of 
injection which guarantee laminarity of the jet flow and validity of the boundary layer 
approximation. Cases 1-3 illustrate the effects of the ratio tte//Zm and the continuous phase 
Reynolds number Re~ on the jet contraction and velocity distribution. The values of the 
dimensionless numbers in cases 4-8 are identical to those of Yu & Scheele (1975), so that a 
comparison between the two types of solution can be made. In all the cases 1-8 a parabolic 

Table I. 

Case N~ We Re2 Re l /~2/~ i P21pl Fr 

1 121.47 2.81 660.47 400 0.969 1.600 2.039 
2 121.47 2.81 660.47 200 0.969 3.200 3.738 
3 121.47 2.81 660.47 400 2 3.302 3.790 
4 128.46 5.4 835 1670 1 0.500 6.500 
5 128.46 5.4 835 1670 1 0.500 6.500 
6 128.46 5.4 835 -- 6.500 
7 128.46 54 835 1670 1 0.500 6.500 
8 128.46 54 835 1670 I 0.500 6.500 
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initial axial velocity profile was used except in cases 5 and 8, where a flat one was adopted. 
Cases 4--8 correspond to a jet injected upwards (see table 1). The calculations were performed 
with the following steps: 

A~b = 0.0025 along ~, line 

Ar = 0.00125 along r line 

A~" = 0.005 along s r line. 

The prescribed accuracy w a s  10 -4 with respect to the internal iterations and 10 -3 with 
respect to R(~). The results obtained differ from each other slightly when doubling A~', A4J, Ar 
and this practically confirms the stability of the numerical method. 

As for the choice of the rm~, value in [25] it is conventional practice to balance between the 
accuracy and the economy of the computational time. Numerical experiments were performed 
with rmax and 2rmx for different values of Re2 numbers. Doubling chosen values of rmax did not 
practically affect the numerical results. 

(b) Velocity distributions 

Both the jet and the continuous phase stream lines in the case 1 are shown in figure 3. As is 
seen the stream lines inside the jet are almost straight. Some deviations are observed in the 
region near the nozzle. The line ~ = 1/2, corresponding to the interface, becomes curved near 
the nozzle, which is caused by the sudden acceleration of the jet surface in that region. At 
sufficient distances from the nozzle (5--8 D~/2) this line is almost straight. So the jet surface can 
be approximately considered as a conic one (see also Skelland & Huang 1977). The continuous 
phase streamlines near the nozzle are almost perpendicular to the outer edge of the boundary 
layer presented by the line U1 = I% Uzm~x in figure 3. 

At sufficient distances from the nozzle the lines ~ = const are almost parallel to the 
interface. 

In figure 4 the axial velocity distribution for three different cross sections of the jet is drawn. 
Downstream the axial velocities of the points of the jet axis and surface increase. The velocity 
profile relaxation according to Yu & Scheele (1975) is caused by the jet momentum exchange 
which results from the acceleration of gravity, the surface tension and the viscous interaction 
between the phases. The axial velocity gradient on the interface increases as well. 

o O.g ~0 ~ 2.0 23" 

~ case / 

2O ~ 

Figure 3. Stream lines. 
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Figure 4. Axial velocity distribution. 

A uniform axial velocity distribution is obtained when a nonviscous outer phase is 
considered (Duda & Vrentas 1967, Markova & Shkadov 1972). 

When a viscous continuous phase is considered the existence of a shear stress on the 
interface does not allow relaxation of the axial velocity profile into a flat one. The radial 
velocity modulus distribution is shown in figure 5. It increases near the nozzle exit and reaches 
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Figure 5. Radial velocity distribution. 
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its maximum value within the outer boundary layer. Downstream the radial velocity modulus 
reaches two maxima; the first--inside the jet and second--inside the layer. The radial component 
of the velocity is negative everywhere. 

(c) The effect of initial velocity profiles 
It was noted that parabolic and flat profiles were used for the initial axial velocity 

distribution [14], [15]. The jet radius contractions are compared in figure 6, obtained from [14] 
and [15]--cases 4 and 5 respectively. In the region near the nozzle the jet contraction 
corresponding to a flat initial profile (case 5) is weaker than in the case of an initial parabolic 
profile (case 4). The opposite situation is observed for the shear stress ~-, figure 8. The surface 
axial velocity variation in the case 5 on the same figure shows that the axial velocity profile 
relaxation is weaker. The downstream U, and r variations in the cases 4 and 5 are almost 
identical. 

(d) Comparison between the results of the direct numerical and the approximate solutions 
Figures 6 and 7 show correspondingly the jet contraction and the axial velocity distribution 

as obtained from the proposed direct numerical solution and compared to the jet contraction 
and the velocity distribution obtained by Yu & Scheele (1975). 

In figure 6 the jet radii as obtained from different methods are presented. In particular the 
Duda & Vrentas (1967) result is drawn. The initial velocity profile is parabolic in all the cases. 
Note that a comparison with the work of Yu & Scheele (1975) is not possible in the case of a 
flat initial profile because their method does not include this case. 

The jet radius coincidence with the two methods taken into account is sufficiently ac- 
curate-figure 6. The results of the proposed method in the case of a nonviscous continuous 
phase are practically identical to those of Duda & Vrentas (1967). When compared to Yu & 
Scheele (1975) results, the jet radii are in good agreement. But the comparison of the velocity 
profiles for viscous continuous phase (figure 8) shows considerable difference. The axial 
velocity gradients on the interface (~'//~2) differ from each other by more than 10~, while the 
surface velocity values differ by more than 20%. The agreement between the axial velocity 
profiles is much weaker for the continuous than the dispersed phase, possibly because of the 

R [ case,~ 
1 case4 ~ and Schee#e 

~.o~ •case 5 
. . . . . . . .  case6 

~ . ~  ~ "" ~'~. . . . . .~ " ~ . ~  

0 6 -  

O.5 
0 f 2 3' 

y - I O  2 

Figure 6. Comparison between the exact and approximate jet radii. 
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Figure 7. Effects of the initial profiles on the surface velocity and shear stress. 
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Figure 8. Comparison between the exact and approximate axial velocity distributions. 
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Figure 9. Effect of g2/~t and Re~ on the jet radius and surface velocity. 
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Figure 10. Effect of We and the initial profile on the jet radius and surface velocity. 
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inherent inaccuracy of the integral methods of the boundary layer theory noted by Yu & 
Scheele (1975). 

(e) The eMect of the viscous ratio ~1~2]~1~1, continuous phase Reynolds number Re1 and Weber 
number We 

The influence of the variation of ~J~l and Re~ (cases 2 and 3) on the jet contraction and 
surface velocity Us is presented in figure 9. All of the other injection conditions are identical to 
those of case 1. The effect of increasing of the ratio ~2//~ from the value 0.969 up to 2 is greater 
than the double decreasing of Re1. The variations of Re~ and ~ J ~  influence considerably the 
axial velocity profile relaxation while the same variations slightly affect the jet radius. 

The influence of Weber number on the surface velocity and jet radius R(~') for different 
initial profiles is shown in figure 10. 

The effect of We 10 time increasing on the jet contraction and surface velocity variation is 
much weaker than the effect of substituting a fiat initial profile for the parabolic one. This 
supports the assumption of Yu & Scheele (1975) that the jet relaxation near the nozzle depends 
considerably on the type of the initial velocity profile. 

CONCLUSIONS 

The problem of determining the form and the velocity profiles of a jet flowing into a viscous 
continuous phase has been solved by means of a direct numerical solution. Two different initial 
profiles have been used for describing the distribution of the axial velocity. The results obtained 
show that the type of the initial profile considerably affects the jet behaviour especially in the 
regions near the nozzle. A comparison with certain approximate methods shows good 
agreement between the results concerning the jet contraction and considerable differences with 
regard to the velocity distributions. 
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